
I

Two-Part Models for Father–Child Relationship
Variables: Presence in the Child’s Life and
Quality of the Relationship Conditional
on Some Presence
Kimberly L. Henry Colorado State University, Colorado School of Public Health
Thao P. Tran Colorado State University
Della V. Agbeke Colorado State University
Hyanghee Lee Colorado State University
Anne Williford Colorado State University
John J. Dziak The Pennsylvania State University

A B S T R AC T Parent–child relationship variables are often measured using a two-
part approach. For example,whenassessing thewarmth of the father–child relation-
ship, a child is first asked if they have contact with their father; if so, the level of

warmth they feel toward him is ascertained. In this setting, data on thewarmthmea-
sure ismissing for childrenwithout contact with their father, and suchmissing data
can pose a significant methodological and substantive challenge when the variable
is used as an outcome or antecedent variable in a model. In both cases, it is advan-
tageous touse an analyticmethod that simultaneouslymodelswhether the child has
contact with the father, and if they do, the degree to which the father–child rela-
tionship is characterized by warmth. This is particularly relevant when the two-part
variable is measured over time, as contact status may change. We offer a pragmatic
tutorial for using two-part variables in regressionmodels, including a brief overview
of growth modeling, an explanation of the techniques to handle two-part variables
as predictors and outcomes in the context of growth modeling, examples with real
data, and syntax in both R and Mplus for fitting all discussed models.

K E YWORD S : two-partmodels, two-part predictors, two-part growthmodels, father-
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n family-based studies, researchers commonly assess variables that describe the

parent–child relationship—for example, the quality of parenting, harsh discipline,

or the level of attachment between a parent and child. These variables are of
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common interest in social work practice, particularly in the child welfare system,

where the focus is often to enhance parent–child relationships and parenting prac-

tices (Chaviano et al., 2018). As such, studies investigating these kinds of variables

must use appropriate analytic techniques to capture reliable representations of the

phenomena under study, especially in applied sciences such as social work, where

the goal is to inform clinical practice and social policy.

In many cases, however, these sorts of variables are irrelevant—or are at least

qualitatively different—if a child and parent do not have contact with one another.

Therefore, the collection of this type of variable is often carried out using a two-step

measurement approach. For example, when assessing the warmth of the relation-

ship between a child and their father, a child may be first asked if they have contact

with their father (e.g., “How often do you spend time with your father?”), and if

some minimal threshold of contact is met (e.g., at least some contact), the child is

then asked a series of questions to ascertain the level of warmth. As a result, a child

without contact with their father will have a missing score by design for the items

thatmeasurewarmth. Furthermore, this is anunusual kind ofmissing data inwhich

the true value is not just simply unknown, but the meaning of the variable changes

or becomes unclear (for a more extreme example, consider a job satisfaction ques-

tion for an unemployed person). The presence of missing data in this case can pose

a significant challenge when the variable is used as either an outcome of an ante-

cedent variable (e.g., Does paternal depression affect the warmth of the relationship

between child and father?) or as a predictor of some later outcome (e.g., Is more

warmth in the father–child relationship associated with healthy child develop-

ment?). Although one might be tempted to treat the covariate of interest (e.g.,

warmth) as missing during times when the child and father do not have contact,

or to record the lowest possible value, it is advantageous to use an analytic method

that simultaneously models whether the child has contact with the father, and if

they do, the degree to which the father–child relationship is characterized by

warmth. In the case of no contact, warmth is not simply missing and is certainly

not missing at random, an assumption of most modern missing-data methods (Col-

lins et al., 2001). We cannot assume that no contact between father and child is the

same as the lowest possible score forwarmth. If the father and child do not have con-

tact, certain father–child relationship characteristics (e.g., warmth, supervision,

harsh parenting) are not relevant or are at least qualitatively different than for dyads

with contact. These issues become evenmore relevant when the two-part variable is

measured over time, as contact status tends to change for a portion of the popula-

tion. This is commonwhen studying families over time, particularly in the childwel-

fare system, where single-parent families have been historically overrepresented

(Whittaker & Tracy, 1990) and contact with fathers is often limited, or at least as-

sumed to be (Brewsaugh & Strozier, 2016).
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Models that consider two-part variables are readily available but are not often

used in applied research. In this paper, we offer a pragmatic tutorial for using two-

part variables in regression models, including a brief overview of growth modeling,

explanation of the techniques to handle two-part variables as predictors and out-

comes in the context of growth modeling, examples with real data, and syntax in

both R (R Core Team, 2014) and Mplus (Muthén & Muthén, 2017) for fitting all dis-

cussed models. Our goal is to provide social work researchers with an easy-to-use

framework for capitalizing on this sort of data that is commonly encountered in stud-

ies of families.

An Example From the Rochester Intergenerational Study
In this paper, we provide an example derived from the Rochester Intergenerational

Study (RIGS). We briefly summarize RIGS here (see Thornberry et al., 2018, for more

detailed information). The genesis of RIGS is the Rochester Youth Development

Study (RYDS), a birth cohort of 1,000 adolescents (referred to as Generation 2 [G2];

G2’s primary caregiver is referred to as Generation 1 in the Rochester Studies), rep-

resentative of the 7th- and 8th-grade public school population in Rochester, NY, in

1988. Adolescents who were at high risk for antisocial behavior were oversampled

(by oversampling males and adolescents residing in high-crime areas of the city). The

RYDS adolescents (G2s) were followed from 1988 to 2006 across 14 interviews. RIGS

began in 1999 as the oldest biological child of G2 participants was identified (if born

previously; n 5 370 in Year 1); these children are referred to as Generation 3 (G3).

New firstborn G3s were added to the sample in each subsequent year when G3

was 2 years of age. Annual interviews of G2s were completed each year after the

family’s entry into RIGS and continueduntil the child (G3) turned 18. G3s completed

annual interviews beginning at age 8. Over the course of RIGS, data were collected

from 539 parent–child (G2–G3) dyads. All procedures for RYDS and RIGS were over-

seen by the University at Albany Institutional Review Board. The examples used in

this tutorial consider all G2 fathers and their G3 child (273 father–child dyads).

For this tutorial, we use the child’s (G3) report of several variables at ages 14, 15,

and 16. Our focus is on the relationship between the child (G3) and their father (G2).

Most children in the study had continuous contact with their mother, but contin-

ual contact with fathers was less common. Details and descriptive statistics of the

variables we consider in this tutorial are reported in Table 1. The two-part variable

considered in this tutorial is a measure of the child’s sense of warmth toward their

father. At each interview, children were asked how often they see their father; re-

sponse options included 0 (never), 1 (almost never), 2 (sometimes), and 3 (often). Across

all children and years considered, children did not have contact with their father

on 18% of the measurement occasions. Children who reported a score of 1 or

higher for contact were administered an 11-item measure of warmth toward their
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father (Hudson, 1996). Example items, scale anchors, and psychometric information

are reported in Table 1. Relevant items were reverse coded, and the average of the

11 itemswas taken for each child at each study year to create a scale score ofwarmth

toward father. Thus, at each interview year, we have a binary indicator of whether

the child saw their father (G3CON5 0 if they never saw their father, and G3CON5 1

if they saw their father [even if only minimally]). In addition, conditional on some

contact, we have a score for warmth toward father at each measurement occasion

(G3WARM). This two-part variable is at the center of the demonstrations presented

in this tutorial.

In order to consider a wide variety of models that a researcher may encounter,

we present an assortment of types of predictors and outcomes. In the first part of

the demonstration, we consider the two-part variable (contact/warmth) as an out-

come. In this context, we use one time-invariant variable to predict the two-part

outcome: whether the child (G3), and both the biological mother and father, lived

in the same household at age 10 (INTACT). We also use one time-varying variable

to predict the two-part outcome: child’s report of stressful life events in the life of

the family during the year preceding the interview (G3EVENT). Both variables are de-

scribed in Table 1.

In the second part of the demonstration, we consider the two-part variable (con-

tact/warmth) as a predictor of the child’s depressive symptoms (Radloff, 1977), which

were measured from age 14 to age 16 (G3DEP). The depressive-symptoms scale is de-

scribed in Table 1.

A Brief Introduction to Growth Curve Analysis
The modeling of change over time is common in family research. Here, we provide

a brief primer to set the stage for the forthcoming discussion of growth curve anal-

ysis with two-part variables. We focus on the analysis of longitudinal data as a stan-

dard two-level multilevel regression model in which repeated measures (Level 1 of

the multilevel model: within persons) are nested in persons (Level 2 of the multi-

level model: between persons; Laird & Ware, 1982). We first consider a growth

model for a continuous measure. The linear growth model for a repeated measure

yti, where t denotes the measurement occasion (e.g., time or age of the child) and i

denotes the individual, is written as

yti 5 p0i 1 p1i � timeti 1 eti (1.1)

p0i 5 b00 1 r0i (1.2)

p1i 5 b10 1 r1i (1.3)

eti ∼ N 0, r2
eð Þ (1.4)
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r0i, r1i ∼ MVN
0

0

" #
,

r2
0

r01 r2
1

" # !
: (1.5)

Equation 1.1 represents the Level 1 (within-persons) model and indicates that

variable y for individual i at time t is defined by an intercept (p0i), a slope (p1i),

and a residual (eti). The intercept and slope are subscripted with an i to denote that

each individual in the sample has an intercept and a slope to describe their trajec-

tory of change in y over time; these are commonly referred to as growth parameters.

The intercept represents the individual’s predicted score on y when time 5 0, and

the slope represents the individual’s predicted change in y for a 1-unit increase in

time. Residuals represent the difference between the observed y score and the pre-

dicted y score for each person at each timepoint.

Equations 1.2 and 1.3 represent the Level 2 (between-persons) models. Equa-

tion 1.2 denotes that the random intercepts (i.e., intercepts vary across individuals)

can be described by a fixed mean (b00), the average predicted score for y when

time 5 0, and a residual (r0i) for each individual, which captures their deviation

from b00. Equation 1.3 denotes that the random slopes (i.e., slopes vary across individ-

uals) can be described by a fixed effect of time (b10), the average predicted rate of

change in y, and a residual (r1i) for each individual, which captures their deviation

from b10. Equation 1.4 delineates the Level 1 residuals (eti), which are assumed to be

normally and conditionally independently distributed (i.e., conditional on the individual

random effects (r2
0, r2

1) with a mean of 0 and a common variance (r2
e ). Last, the var-

iances of the Level 2 random intercepts and slopes (r2
0, r2

1), shown in Equation 1.5,

are assumed to be multivariate normally distributed and freely covary (r01), indi-

cating that one’s level at time5 0 may be related to their rate of change over time.

We may also represent the growth model graphically. Figure 1A translates the

equations just described to a graphical depiction of the model.

Consider an example in which change in children’s depressive symptoms is

modeled from ages 14 to 16. We begin with an unconditional growth model: a model

that specifies change in depressive symptoms but does not include predictors of

change in depressive symptoms over time. The syntax for this example is presented

in the online Appendix (Script Set 1). We fit the model using the nlme package in R

Version 3.1 (Pinherio et al., 2020) and Mplus Version 8.2 (Muthén &Muthén, 2017).

Throughout the text and tables of this manuscript, we present the results from R

(and R packages). In some cases, the results differ slightly from the results produced

by Mplus due to different estimation methods. We regressed depressive symptoms

across time on a vector of ones (to define the intercept, the default model setup in

both nlme and Mplus) and a time variable (G3AGE15) that is coded21, 0, and 1 cor-

responding to child age 14, 15, and 16, respectively. Thus, the intercept represents

the child’s depressive symptoms at age 15 (when time 5 0), and the slope captures

linear change in depressive symptoms for each year from age 14 to 16. We defined
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the center timepoint (age 15) as the intercept in this example, but any age may be

selected. The fixed-effect estimate of the intercept (b00) is 1.104, denoting the aver-

age predicted depressive symptoms at age 15. There is substantial variability in the

intercept estimates—variance(r0i)—across children (r2
0 5 :290 for variance, r0 5

:539 for standard deviation), indicating that children differ in their level of depres-

sive symptoms at age 15. Most R packages print out the standard deviation and

correlation for the random effects by default, whereas Mplus prints out the variance

and covariance for the random effects by default. For most functions in R, the var-

iance of the randomeffects can be printed via the VarCorr function (see the example at

the bottom of the R syntax for Script Set 1 in the online Appendix). The fixed-effect

estimate of the linear slope (b10) is .036, denoting the average predicted rate of
Figure 1. Graphical Depiction of Described Models

Note. Residuals are depicted in Figure 1A only for parsimony.
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change in depressive symptoms each year from age 14 to age 16. This small rela-

tive value suggests a minor yearly increase in depressive symptoms over this

period. The variability in the linear slope estimates across children (r2
1 5 :020,

r1 5 :142) captures differences in the rate of change of depressive symptoms across

children (i.e., some children may increase depressive symptoms rapidly, some

may not change, and some may decrease depressive symptoms over the 3-year pe-

riod). The correlation of the random intercept and slope (standardized r01) is .179,

indicating a small positive correlation. Specifically, greater depressive symptoms at

age 15 are associated with a greater increase in depressive symptoms across time.

The variance of the Level 1 time-specific residuals [v(eti)]—which were constrained

to be equivalent over time—is .133. This is indicative of substantial within-person

variability in depressive symptoms not accounted for by time.

An unconditional growth model can be extended to consider predictors of the

outcome modeled. Consider a model that adds one time-invariant predictor (G3

sex; the variable is called G3MALE) and a time-varying predictor (G3 stressful life

events measured at ages 14, 15, and 16; the variable is called G3EVENT). To evaluate

the effect of a time-invariant variable (e.g., G3MALE), we added the variable as a

predictor of the intercept (e.g., depressive symptoms at age 15) and slope for age

(represented by an interaction between G3MALE and G3AGE15). To evaluate the ef-

fect of a time-varying variable (e.g., G3EVENT), we simply added the predictor as a

main effect, allowing stressful life events at time t to predict depressive symptoms at

time t. Figure 1B provides a graphical depiction of the model, where x1 represents a

time-invariant covariate (e.g., G3MALE) and x2 represents a time-varying covariate

(e.g., G3EVENT). The results of the model are presented in Table 2. We estimated

that at age 15, holding stressful life events constant, G3 males had an average

depressive-symptoms score 0.367 units lower than the average of G3 females; how-

ever, the change in depressive symptoms across time was quite similar for G3 males

and G3 females (the estimate for the sex by age interaction is 2.039). We also esti-

mated that, holding G3 sex and G3 age constant, each additional stressful life event

increased the predicted depressive-symptoms score by 0.048 units.

Growth Model for a Binary Outcome
This framework for modeling growth can be easily extended to consider categorical

outcomes, for example, to capture level and change in a binary y variable. For a bi-

nary outcome, a growth model can be fit using either a logistic or probit regression

model (Hedeker & Gibbons, 2006). We focus here on the logistic model. In the case

of a binary y, it is assumed that y is a discretized form of an underlying continuous

latent outcome ( y*; the asterisk denotes that y is latent). As an example, consider the

child’s regular use of substances (05 no regular use of substances, 15 use alcohol

or cannabis at least once per month) at ages 14, 15, and 16. We can imagine an un-

derlying continuum of regular substance use (G3SUBS*). When a child’s value of
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G3SUBS* exceeds a certain level, also referred to as a threshold, their observed score

of regular substance use is 1, and 0 otherwise. Similar to a continuous outcome,

each individual’s trajectory of change in y* can be described by an intercept (the

predicted log odds of y* when time 5 0) and a slope (the predicted change in the

log odds of regular substance use for a 1-unit increase in time). We expect variabil-

ity in the log odds of the outcome at time 0 (i.e., variability in the intercepts across

children) and variability in the rate of change over time (i.e., variability in the slopes

across time). Moreover, covariance in the intercepts and slopes across children can

be estimated. In these ways, growth models for continuous and binary outcomes are

similar.

It is important to note one key difference between a growth model for a contin-

uous outcome and a binary outcome. For a continuous outcome, the mean growth

trajectory for the population is simply defined as the linear function of the intercept

(b00) and the slope (b10). However, whereas this is also the case for the latent response

variable when y is categorical (y*), it is not the case for the observed categorical y.

Hedeker and colleagues (2018) explained that the estimates derived from generalized

linear mixed models (GLMM, including growth models for categorical outcomes)

have what Neuhaus and colleagues (1991) referred to as a subject-specific interpretation.

That is, the subject-specific regression estimates from a resultant GLMM represent
Table 2
Results of a Conditional Traditional Growth Model for Continuous and Binary Outcomes

Parameter

Continuous Outcome:
Depressive Symptoms

Binary Outcome:
Substance Use

Estimate SE Estimate SE

Fixed effects
Intercept 1.071 0.055 26.846 1.140
Age (centered at age 15) 0.054 0.025 0.895 0.361
Male 20.367 0.062 20.488 0.640
Age (centered at age 15) � Male 20.039 0.036 0.709 0.539
Stressful life events 0.048 0.008 0.393 0.100

Random effects
sd(intercept) 0.461 – – –

sd(age [centered at age 15]) 0.117 – 2.662 –

corr(intercept, age) 0.145 – – –

sd(residual) 0.372 – – –
Note. Sd 5 standard deviation; corr 5 correlation. Although not reported here, the output
(shown in the online Appendix) of the models includes p-values for testing statistical signif-
icance of the fixed effects.
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the expected change in the outcome for a 1-unit increase in the predictor, holding

constant other predictors and all random effects in the model. The population-average

regression estimates represent the expected change in the outcome for a 1-unit increase

in the predictor, holding constant other predictors but not random effects. Thus, the

subject-specific parameter estimates from a growth model of a categorical outcome

differ in interpretation from the corresponding population-average estimates. Al-

though both the subject-specific and population parameter estimates are useful, the

former are applicable for drawing inferences for individuals, and the latter are appli-

cable for drawing population-based inferences (Zeger et al., 1988). Population es-

timates are needed to calculate population-average predicted probabilities of the

categorical outcome based on covariate levels. That is, to calculate the response prob-

ability for the population at a particular point in time (e.g., probability of regular

substance use at age 15), it is necessary to calculate and then average the individual

response probabilities for all individuals in the population. For binary growth mod-

els fit as a GLMM, obtaining the population-average estimates is a postestimation

(i.e., after fitting the GLMM and obtaining the subject-specific estimates) endeavor.

Hedeker et al. (2018) published a technique for carrying this out in SAS. Their recom-

mendations are also implemented in the GLMMadaptive package (Rizopoulos, 2020)

for R, and we demonstrate its use in the following example.

Consider an example to model the log odds of the child using substances at least

once per month at each measurement occasion (G3 age 14, 15, 16). The syntax for

this example is presented in Script Set 2 in the Appendix (online). Time is specified

using the same technique as themodel for depressive symptoms (centered at age 15).

A logit link function and amaximum likelihood estimator are used. The fixed-effect

estimate of the interceptwas25.152, which represents the predicted log odds of reg-

ular substance use at age 15 (a subject-specific effect) for a participantwith a random

effect of 0. There was some variability in the intercept estimates across children, in-

dicating that children differed in the log odds of regular substance use at age 15. The

fixed-effect estimate of the slope was 1.176, denoting the predicted rate of change

in the log odds of substance use from age 14 to age 16 (also a subject-specific effect).

This presents the expected change in the log odds of regular substance use for each

year the child grows older; the positive value indicates that the log odds of regular

substance use increase over time. The variability in the slope (r2
1) was very small,

and in fact, when fit using the GLMMadaptive package in R, the slope variability can-

not be estimated. This is often the case with growth models for binary outcomes

(Long et al., 2009). Therefore, the random effect for the slope is constrained to zero

in this example.

The GLMMadaptive package allows for estimation of the population-average

coefficients (referred to as marginal coefficients in the output) as well as the subject-

specific effects just presented. The population-average intercept was estimated to

be 22.708, and the population average slope was estimated to be .719. These log
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odds estimates can then be used to calculate the predicted probability of regular sub-

stance use at any given age. For example, at age 15, the estimated probability of

regular substance use is calculated as follows: expð22:708Þ � ð1 1 expð22:708ÞÞ 5
:06. At age 16 the estimated probability of regular substance use is calculated as fol-

lows: expð22:708 1 ð:719 � 1ÞÞ � ð1 1 expð22:708 1 ð:719 � 1ÞÞÞ 5 :12.

Following the same protocol for the continuous growth model example, the bi-

nary growth model can easily be extended to include predictors. We added G3 sex

as a predictor of both the intercept and slope of the binary growth model and added

G3 stressful life events as a time-varying predictor. Results are presented in Table 2.

Holding stressful life events constant, we did not find strong evidence that the inter-

cept (log odds of regular substance use at age 15) and the slope (rate of change in the

log odds of substance use across time) differed between males and females. (Al-

though the estimates are not close to 0 for the effect of G3MALE on the intercept

and slope, the standard errors are very large with respect to the estimates, and there-

fore, there is a great deal of uncertainty about the effect of sex in this instance.)

However, we did find evidence that G3 stressful life events were associated with

greater log odds of regular substance use (holding sex and age constant). The mar-

ginal coefficient estimate for stressful life events was .259; by exponentiating this

value— expð:259Þ 5 1:29—we estimated that in the population, a 1-unit increase

in stressful life events was associated with about a 30% increase in the odds of reg-

ular substance use during adolescence.

With a simple explanation of fitting growth models for continuous and binary

outcomes complete, we are now ready to turn our attention to consideration of

two-part variables and our example of father–child contact and warmth in the

father–child relationship conditional on some contact.

When a Two-Part Variable is an Outcome
Olsen and Schafer (2001) introduced a two-part growth model for a longitudinal

semicontinuous variable (yti), defining a semicontinuous variable as one that arises

from two processes: one that determines if the response is zero, and a second that

determines the level of yti if nonzero. This type of model has been commonly used

to model substance use by individuals over time (Brown et al., 2005). For example,

if yti was a measure of alcohol problems, a score of 0 would represent people who

reported no alcohol use. Among those who do drink, we would observe their score

for frequency/severity of alcohol problems. Olsen and Schafer (2001) demonstrated

that a variable of this nature can be modeled using two correlated latent growth

curves: one to model the likelihood of being a drinker versus a nondrinker (i.e.,

the binary part of a two-part model as it contrasts nondrinkers [0] to drinkers [1])

and a second to model alcohol problems (i.e., the continuous part of the two-part

model as it measures the frequency/severity of alcohol problems) among those who

reported alcohol use. To specify this model, a growth curve is fit to both parts (i.e.,
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one growth model for the binary part and one growth model for the continuous

part), and the random growth parameters (e.g., the intercepts and slopes) are al-

lowed to covary. Xu and colleagues (2014) presented a more recent examination

of two-part growth models in a multivariate context.

In extending our motivating example, the two-part model described by Olsen

and Schafer may be applied (with some change in interpretation) to situations in

which the two parts represent whether or not the child has contact with their father

at each observed age (which may be fitted as a binary growth model), and condi-

tional on having some contact, the level of warmth that the child feels toward their

father at each observed age (which may be fitted as a continuous growth model). In

the RIGS, childrenwere first asked how often they had contact with their father dur-

ing the past year, and only those with some contact were asked about the warmth

they felt toward their father. Thus, the outcome variable in this scenario is broken

into two parts, U and V for the binary and continuous parts, respectively:

Uti 5
1 if contact with father  5  yes
0 if contact with father  5  no

�

and

Vti 5
g G3 warmthð Þif Uti 5 1
irrelevant if Uti 5 0

�

For Vti, the continuous part of the two-part outcome, g, is a monotone increasing

function that allows Vti to be normally distributed—that is, approximately Gaussian

(Olsen & Schafer, 2001). For skewed variables, meeting this assumption may neces-

sitate a transformation (i.e., log, exponential, square root). Because two-partmodels

are often used to accommodate outcomes that are skewed to the right, a log trans-

formation is commonly applied, but any transformation that normalizes a non-

normal distribution can be accommodated. Figure 1C provides a graphical depiction

of an unconditional two-part regression model.

In the RIGS example, at each of the three observation periods, we have a binary

indicator of whether the child had some contact with their father (G3CON5 1 for at

least some contact, G3CON5 0 for no contact); for thosewith some contact, we have

a measure of the warmth that they felt toward their father (G3WARM). As such,

G3WARM is irrelevant (or at least qualitatively different) and was not assessed dur-

ing measurement occasions when G3CON5 0. In the distribution of G3WARM, the

variable is skewed to the left; that is, there was a tendency toward higher warmth

scores. Therefore, we exponentiated the G3WARM scores (G3WRM2PRT), which

moved the distribution of the continuous measure of our two-part outcome toward

normality (M 5 30:4, SD 5 12:7, skew 5 .2).

Using the longitudinal variables G3CON andG3WRM2PRT, two correlated growth

curve models (i.e., correlated random-effects models) may be fit to the data—one for

the logit probability that G3CON5 1 (i.e., Uti 5 1) and one for the mean conditional
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response of G3WRM2PRT [i.e., EðVtijUti 5 1Þ]. Each is defined by an intercept (i.e.,

the predicted score for the modeled variable when age equals 15 [the centering point

for G3AGE15]) and a slope (i.e., the predicted rate of change for the modeled variable

for each year the child grows older), akin to the unconditional continuous and binary

growth models described in the introduction. The intercept and slope within each

part, and the intercepts and slopes across parts, are allowed to freely covary. The syn-

tax for the unconditional two-part growth model (i.e., a model without predictors

of the growth parameters) is presented in the online Appendix (Script Set 3) for

GLMMadaptive in R and in Mplus.

For the binary part of the model, the intercept was 3.921. Note that when fitting

a two-part growth model, GLMMadaptive models the log odds of a 0 score (e.g., no

contact) rather than a score of 1 (e.g., contact); therefore, it is necessary to take

the negative of the printed value for an interpretation that is consistent with the tra-

ditional binary growth model fit earlier. This value represents the average predicted

log odds that a child will have some contact with their father at age 15 for a partic-

ipant with a random effect of zero. Note that this is a subject-specific effect. The

slope for time (centered at age 15) was 2.224 (taking the negative of the printed

value is also necessary for the slope coefficients), indicating that the log odds of con-

tact tend to decline over time, though the standard error for this effect is large. For

the continuous part of the model, the intercept was 27.975, providing the predicted

level of warmth at age 15 conditional on having some contact with the father. Recall

that to arrive at a normal distribution for our warmth score, we exponentiated the

original warmth score. Thus, to return to the original scale, we took the natural log

[e.g., lnð27:975Þ 5 3:3]. The slope for time was 20.983, indicating that the warmth

toward father tended to decline over time. Specifically, each 1-unit increase in age

was associated with a 0.983-unit decrease in G3WRM2PRT. In our example, random

effects for the intercept and slope were estimated for the continuous growth model,

allowing for variation across children in warmth at age 15 as well as the rate of

change in warmth across time. A random effect for the intercept of the binary

growth model was included (i.e., allowing for variation in the log odds of contact

at age 15 across children); however, there was not substantial variability in the bi-

nary slope and thus its variance was constrained to zero. Covariances of the contin-

uous random intercept and slope, and the binary intercept, were all modeled. The

covariation of the random intercept of the binary part of the growth model with

the random intercept and slope of the continuous part of the growthmodel allowed

the presence or absence of father contact across time to provide information about

the trajectory of warmth over the observation period. In this way, children who had

no contact across the observation period contributed little to the estimation of the

growth model for warmth (Olsen & Schafer, 2001).

For a two-part growth model, GLMMadaptive will also provide marginal (i.e.,

population-averaged) coefficients. These coefficients average over random effects,
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and they also average between participants who have and do not have observed

values on the continuous part of the model. Unfortunately, the marginal coeffi-

cients must not be used in our example because they rely on the assumption that

Vti 5 0 if Uti 5 0. This assumption is reasonable for substance use variables; for ex-

ample, it is reasonable to assume that cigarettes per week for nonsmokers is zero.

However, as discussed earlier, it does not apply well to the current situation. It is

not reasonable to assume that all children with no contact with their father should

have zeroes on the warmth scale. However, it is not reasonable to ignore them ei-

ther, as these cases are not missing at random. Thus, in this situation there is no

readily interpretable marginal model for the entire sample because it is not reason-

able to average well-defined and poorly defined variables together.

Predictors of the growth parameters for each part are easily incorporated by re-

gressing the growth parameters on a time-invariant covariate and regressing the

individual scores at each measurement occasion on a time-varying covariate. We

augmented our example two-part model in this way, and the results of the model

with a time-invariant predictor (i.e., whether the child lived with both biological

parents in the same household at age 10 [INTACT]) and a time-varying predictor

(i.e., stressful life events as reported by the child [G3EVENT]) are presented in Table 3.

First, consider the results for the continuous growth model for level of warmth

toward father. Holding stressful life events constant, and conditional on some con-

tact, our model predicted that children living in a household with both the biolog-

ical mother and father at age 10 would, on average, have a G3WRM2PRT score

[i.e., exp(G3WARM)] 4.740 units higher at age 15 (the centering point for time) than

children who did not live with both biological parents at age 10. This effect does not

show evidence of systematically changing over time (i.e., the interaction with time

is not significantly different than 0). Holding constant the child’s age and living sit-

uation at age 10 (i.e., INTACT), each 1-unit increase in stressful life events was asso-

ciated with a 0.544-unit decrease in G3WRM2PRT—that is, exp(G3WARM). Next,

consider the results for the binary growth model. Living situation appears to be

the only variable reliably related to contact. At age 15 (the centering point for time),

the log odds of contact were 3.884 units higher if the child livedwith both biological

parents at age 10 (a subject-specific effect), and this effect appears to be constant

across time (i.e., the interaction with time is near 0).

When a Two-Part Variable is a Predictor
Dziak and Henry (2017) outlined a method for examination of a two-part variable

as a predictor (rather than as an outcome). In this setting, some variable (yti) is mea-

sured over time, and the desire is to determine if a two-part variable (x_binaryti and

x_numericti), also measured over time, is predictive of yti. For example, consider the

unconditional growth model we presented earlier for children’s depressive symp-

toms (G3DEP) from age 14 to age 16.Wemay be interested in determining if contact
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with father (G3CON, the binary part of the two-part variable x_binaryti) is predictive

of depressive symptoms, and conditional on having some contact, if the level of

warmth that the child reports toward their father (G3WARM, the numeric or con-

tinuous part of the two-part variable x_numericti) is predictive of the child’s depres-

sive symptoms.

In this setting in which the child’s warmth (G3WARM) is an exogenous variable

(i.e., a variable not influenced by other variables in the model), missingness of

child’s warmth during periods of time when they do not have contact with the fa-

ther poses amajor challenge.Without proper handling, all measurement occasions

when the child does not have contact with the father (G3CON5 0) will be deleted in

a listwise fashion. This may have serious ramifications for power and the ability to
Table 3
Results of a Conditional Growth Model for a Two-Part Outcome (Contact With Father
and Warmth Toward Father)

Parameter Estimate SE

Fixed effects for continuous growth model (child’s warmth toward father)a

Intercept 29.114 1.281
Age (centered at age 15) 20.882 0.599
Intact family at age 10 4.740 1.625
Age (centered at age 15) � Intact 20.173 0.788
Stressful life events 20.544 0.163

Fixed effects for binary growth model (contact with father)b

Intercept 2.579 0.587
Age (centered at age 15) 20.241 0.192
Intact family at age 10 3.884 0.986
Age (centered at age 15) � Intact 0.028 0.633
Stressful life events 0.079 0.075

Random effects
sd(continuous intercept) 10.921 –

sd(continuous slope for age [centered at age 15]) 0.867 –

sd(binary intercept) 3.808 –

corr(continuous intercept, continuous slope for age) 20.321 –

corr(continuous intercept, binary intercept) 0.679 –

corr(binary intercept, continuous slope for age) 20.311 –

sd(residual) 6.900 –
Notes. Sd 5 standard deviation; corr 5 correlation. Although not reported here, the output
(shown in the online Appendix) of the models includes p-values for testing statistical signif-
icance of the fixed effects.
aEstimates are in the metric of exp(warmth).
bEstimates present the log odds of contact equal to 1 (i.e., at least some contact with father).
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obtain unbiased estimates. Although an analyst may be inclined to impute themiss-

ing values—for example, assigning the lowest score for warmth or using multiple

imputation to model what the missing value might have been had the child been

in contact with the father—Dziak and Henry (2017) described the reasons why these

approaches are undesirable. The former assumes that not having contact with one’s

father is the same as having very low feelings of warmth toward him, which is

clearly problematic. The latter assumes that the data are missing at random (an un-

likely and untestable assumption), which would lead to biased estimates. Moreover,

these methods also miss the opportunity to examine important substantive ques-

tions about the potential differential effects of the two parts. For example, a two-part

approach to modeling the predictor in the current example would allow for the

determination of whether both the presence of contact with the father—and condi-

tional on some contact, the level of warmth that the child has toward their father—

are associated with the child’s depressive symptoms. Such findings could have

important implications for informing the delivery of targeted supports and services

for children andadolescents, particularly for youth in the childwelfare system,whose

risk for mental health challenges is heightened (McNeil et al., 2020).

Dziak and Henry outlined a simple approach for modeling this type of two-part

predictor in a longitudinal model. The approach involves a simple recoding of the

variables. First, one centers the continuous part of the variable (G3WARMti) at the

mean (G3WARMCti 5 G3WARMti 2 mean[G3WARMti]) and then assigns all cases in

which the binary part of the variable (G3CONti) equals 0 to have a score of 0 on

the centered version of the new continuous variable (e.g., if G3CON 5 0 then

G3WARMXti 5 0; if G3CON 5 1 then G3WARMXti 5 G3WARMCti). Then, when

the growth model is fit, the outcome (G3DEPti) is regressed on the relevant time

metric (e.g., G3AGE centered at age 15), G3CONti, and the product term of G3CONti

and G3WARMXti.

In this way, the regression coefficient for G3CONti represented the expected dif-

ference in G3DEPti for cases in which G3CONti 5 1 (e.g., contact with father) and

G3WARMCti 5 0 (e.g., average warmth in the sample for the currently described ex-

ample) and cases in which G3CONti5 0 (e.g., no contact with father). In other words,

we arrived at a comparison of father–child dyads in contact who had a relationship

characterized by average warmth to father–child dyads with no contact. It is impor-

tant to note that any other relevant comparison (i.e., other than when the continu-

ous part of the variable is at the mean) is possible. This simply requires centering

G3WARMCti at the desired comparison point. For example, one could subtract the

score that is one standard deviation below the mean if it is desired to compare cases

in which G3CONti 5 1 (e.g., contact with father) and warmth is one standard devia-

tion below the mean with cases in which G3CONti 5 0 (e.g., no contact with father).

The regression coefficient for G3WARMXti represented the expected difference in

G3DEPti for a 1-unit increase in G3WARMCti when G3CONti 5 1 (e.g., child is in



426 Journal of the Society for Social Work & Research Summer 2022
contact with father). As usual, the regression coefficient associated with both parts

of the variable is adjusted for time and any other covariates in the model. Figure 1D

provides a graphical depiction of the growth model with a two-part predictor.

Table 4 presents results of themodel just described, in which contact with father

and (conditional on some contact) the child’s perception of the warmth of the rela-

tionship were treated as time-varying predictors of the child’s depressive symptoms

fromage 14 to age 16. Script Set 4 of the online Appendix presents the syntax needed

to fit this model in R (the nlme package) and Mplus. In the first model (presented in

Table 4), G3WARM is centered at a score of 2—a very low score for warmth in the

sample. Here, we find that when warmth is at this low level, having contact with

the father was associated with a child’s depressive-symptoms score that was

0.421 units higher than for childrenwith no father contact. In addition, conditional

on having some contact, each 1-unit increase in warmth was associated with a

0.282-unit decrease in depressive symptoms.

If we instead center warmth at a score of 4 (see the second example under Script

Set 4 in the online Appendix)—the highest possible score for warmth—we find that

when warmth is very high, having contact with father is associated with a child

depressive-symptoms score 0.143-units lower than would be expected if the

child had no contact with their father. The effect of warmth, conditional on some

contact, remains the same as in the previous example because centering the
Table 4
Results of a Conditional Growth Model of G3 Depressive Symptoms for a Two-Part Predictor (Contact
With Father and Warmth Toward Father)

Parameter Estimate SE

Fixed effects
Intercept 1.062 0.058
Age (centered at age 15) 0.030 0.018
Contact with father 0.421 0.081
Warmth toward father (centered at low score for warmth) 20.282 0.050

Random effects
sd(intercept) 0.500 –

sd(age [centered at age 15]) 0.138 –

corr(intercept, age) 0.133 –

sd(residual) 0.366 –
Note. Sd 5 standard deviation; corr 5 correlation. Although not reported here, the output
(shown in the online Appendix) of the models includes p-values for testing statistical signif-
icance of the fixed effects.
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continuous part of the two-part predictor only shifts the interpretation of the ef-

fect of the binary part of the two-part predictor.

In summary, this model suggests that when contrasting depressive symptoms as

a function of father contact, the level of warmth of the relationship is important.

When warmth is low, contact with the father is associated with worse depressive

symptoms for the child than no contact at all, but when warmth is high, contact

with the father is associated with fewer depressive symptoms for the child. More-

over, when children have contact with their father, we observed a negative rela-

tionship between warmth and depressive symptoms: Greater warmth toward the

father was associated with fewer depressive symptoms. Again, these distinctions

are important for understanding effective prevention and intervention practices

when serving youth who have no to little or intermittent contact with their fathers.

Discussion
In this paper, we presented a solution to a common measurement challenge faced

by family researchers: the specification and consideration of two-part variables in

which assessment of certain parenting or relationship variables depends on the

level of contact between family members. For example, in considering the expres-

sion of warmth between father and child, care must be taken to account for periods

when the father and child do not have contact. Beyond the warmth example pre-

sented in this tutorial, many other types of variables common in family research

suffer from the same situation. For example, characterization of parental supervi-

sion, discipline tactics, or harsh parenting during times when a parent and child do

not have contact is indeterminate. In these cases, the characterizations of parent-

ing should not simply be considered missing and handled via conventional meth-

ods (e.g., listwise deletion, multiple imputation) because the scores are clearly not

missing at random, an assumption of these methods (Rubin, 1987). Nor should re-

searchers be forced to plug in a value (e.g., the worst possible score for the parent-

ing characteristic). Rather, we argue that during times of no parent–child contact,

variables of this nature should not be treated as missing data in the ordinary sense

but rather as a two-part variable that can be represented as a pair of interrelated

variables. We presented techniques and syntax to account for these sorts of two-

part variables as both predictors and as outcomes in longitudinal research. The il-

lustrative examples that we offered provide context to the types of questions that

can be answered in family-based research and highlight the flexibility and predic-

tive performance of models to accommodate two-part variables.

The methods discussed in this paper not only offer a statistical solution to the

challenge posed by two-part variables in family research but also allow formore nu-

anced assessment of the questions at hand. In the case of two-part outcomes, dual-

trajectory longitudinal growthmodels can simultaneously model change in contact

over time, and conditional on having some contact, change in the relationship
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variable of interest (e.g., expression of warmth between father and child) over time.

Once specified, one can study how covariates may differentially impact growth in

each part of the model.

In the case of two-part predictors, the two-part representation of a predictor

can offer unique insight over an analog approach that considers a covariate as exclu-

sively unidimensional (Dziak & Henry, 2017). A two-part specification of a predictor

allows one to determine if the absence of contact is different depending on the

level of the continuous part of the relationship construct of interest. In our example,

we demonstrated that the effect of having no father contact on a child’s depressive

symptoms depends on whether the comparison is with father–child dyads who are

in contact but have low warmth or father–child dyads who are in contact and have

high warmth. The beneficial effect of contact was only observed when comparing

no-contact dyads to in-contact dyads with high warmth. This is a nuanced finding

that would be lost if father–child dyads without contact were excluded from the

analysis or if contact and warmth were not studied in tandem using a two-part ap-

proach. It should be noted that the method described by Dziak and Henry (2017) is

only appropriate when themissing data aremeaningless (e.g., depressive symptoms

for deceased individuals) or qualitatively different in meaning (e.g., our warmth ex-

ample for absent vs. present fathers), not when it is simply unknown. If the missing

values are meaningful but unobserved, then the method described by Dziak and

Henry is inappropriate (Greenland& Finkle, 1995; Jones, 1996) and full-information

maximum likelihood or multiple imputation is the appropriate approach for han-

dling the missing data.

The techniques illustrated in this paper for a two-part outcome and a two-part

predictor allow researchers to use all available data and avoid the need to exclude

cases or timepoints where data are missing because the father–child pair do not

have contact, or to artificially impute a score (i.e., assume a father–child dyad with-

out contact would have the worst possible score for warmth). Thus, the approaches

we suggest in this paper maximize power, minimize bias, and maintain the gener-

alizability of findings to the identified and sampled population.

In sum, family researcherswho use the types of two-part variables described here

maymore thoroughly answer their questions related to these variables by adopting

the approaches discussed in this paper. The real data examples, and syntax for spec-

ifying these models in both Mplus and R, provide researchers with a clear roadmap

for applying these methods in their own work.
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